Gaussian Processes : Karhunen - Loève Expansion , Small Ball
نویسندگان
چکیده
In this dissertation, we study the Karhunen-Loève (KL) expansion and the exact L small ball probability for Gaussian processes. The exact L small ball probability is connected to the Laplace transform of the Gaussian process via Sytaja Tauberian theorem. Using this technique, we solved the problem of finding the exact L small ball estimates for the Slepian process S(t) defined as S(t) = W (t+a)−W (t), 0 ≤ t ≤ 1 for 1/2 ≤ a < 1. We also prove a conjecture raised by Tanaka on the first moment of the limiting distribution of the least squares estimator (LSE) of a unit root process. The limiting random variable is a ratio of quadratic functionals of the m-times integrated Brownian motion. Its expectation can be found by using Karhunen-Loéve expansion and a property of the orthonormal eigenfunctions of the covariance function of the m-times integrated Brownian motion.
منابع مشابه
A brief note on the Karhunen-Loève expansion
We provide a detailed derivation of the Karhunen-Loève expansion of a stochastic process. We also discuss briefly Gaussian processes, and provide a simple numerical study for the purpose of illustration.
متن کاملEstimation of the Hurst parameter in some fractional processes
We propose to estimate the Hurst parameter involved in fractional processes via a method based on the Karhunen-Loève expansion of Gaussian process.We specifically investigate the cases of the Fractional Brownian motion(FBm) and the Fractional Ornstein-Uhlenbeck(FOU) Family. The main tool is the analysis of the residuals of a convenient linear regression model. We numerically compare our results...
متن کاملKarhunen-Loeve Representation of Periodic Second-Order Autoregressive Processes
In dynamic data driven applications modeling accurately the uncertainty of various inputs is a key step of the process. In this paper, we first review the basics of the Karhunen-Loève decomposition as a means for representing stochastic inputs. Then, we derive explicit expressions of one-dimensional covariance kernels associated with periodic spatial second-order autoregressive processes. We al...
متن کاملKarhunen–Loève expansion for multi-correlated stochastic processes
We propose two different approaches generalizing the Karhunen–Loève series expansion to model and simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an identical set of uncorrelated random variables. The second approach (mcKL) relies on expa...
متن کاملLog-level Comparison Principle for Small Ball Probabilities
(if μ is the Lebesgue measure, the index μ will be omitted). The problem is to define the behavior of P{||X||μ ≤ ε} as ε → 0. The study of small deviation problem was initiated by Sytaya [S] and continued by many authors. The history of the problem in 20th century is described in reviews by Lifshits [Lf2] and by Li and Shao [LS]. Latest results can be found in [Lf3]. According to the well-known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014